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Abstract— A powerful measurement technique suitable for
virtually continuous calibration of ultrasonic hydrophone
probes in the frequency range 250 kHz — 60 MHz is de-
scribed and frequency responses of PVDF polymer hy-
drophones are presented. The validity of the calibration
results was examined using independent calibration tech-
niques. The values of sensitivity in V/Pa obtained using a
linear swept frequency technique were compared with those
which were determined from the measurements employing
nonlinear wave propagation. Also, the sensitivity against
frequency data obtained here were compared with the data
provided by an independent national laboratory. The over-
all agreement between the calibration results obtained using
different techniques mentioned above was within +1 dB at
the frequencies up to 25 MHz. The uncertainty increased
gradually with increasing frequency and was determined to
be +£2.5 dB at 60 MHz. Spatial averaging correction model
is being developed to minimize this uncertainty. The near
continuous frequency plots in the 40-60 MHz bandwidth
were not reported so far and reveal that the ultrasonic hy-
drophone probes response is largely controlled by their de-
sign architecture.

I. INTRODUCTION

TAGNOSTIC ultrasound is used in almost all medi-
cal fields and is quickly becoming the preferred imag-
ing modality in a variety of clinical situations. Ultrasound
image quality upon which the final diagnosis critically de-
pends has improved significantly in the past decade and
this would not have been possible without several engi-
neering and technological innovations and breakthroughs.
One of these major innovations is associated with the ad-
vent of superwideband, sensitive, multielement imaging
transducers. While in the past decade a majority of those
transducers operated at the fundamental frequencies in the
vicinity of 5 MHz, in the recent years the clinical examina-
tions are often carried out at harmonic frequencies often ex-
ceeding 10 MHz. Harmonic images have already proved to
be capable of providing a degree of detail which clearly sur-
passes that available with conventional, fundamental fre-
quency gray scale imaging. Consequently, within the next
half decade it may be expected that harmonic imaging ca-
pability will become a standard available in a new gener-
ation of ultrasound imaging equipment and will be widely
used in all clinical ultrasound applications. Also, the in-
terest in the visualization of tissues at frequencies beyond
20 MHz is gaining attention because the higher imaging
frequencies are capable of providing sub-millimeter resolu-
tion, highly desirable, for instance, in studying skin dis-
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eases. One of the important aspects of this development
in ultrasound imaging is that it created a need for cali-
brated hydrophone probes suitable to perform quantitative
measurements of acoustic fields at these high frequencies.
However, the commercially available probes are typically
calibrated in the frequency range 1-15 or 20 MHz. Al-
though this paper focuses on the development of the mea-
surement techniques applicable beyond 20 MHz, the results
presented also include the hydrophone responses below 1
MHz. This is because this response is important in de-
termining the Mechanical Index, which is widely accepted
as an indicator of potential bioeffects [1]. In the follow-
ing, the measurement techniques developed to calibrate
hydrophone probes in the frequency range from 250 kHz
— 60 MHz are briefly described and the (nearly continu-
ous) frequency responses of different probes are presented
and examined to determine the overall uncertainty of the
calibration. Finally, the methods to minimize the overall
uncertainty of the measurements are pointed out.

II. MEASUREMENT ARRANGEMENT

In Fig. 1 the experimental set up used here is shown.
The wideband approach used here to obtain the majority
of calibration data was based on swept frequency measure-
ment technique. The details of this technique can be found
in [2]. Briefly, the technique, often referred to as Time De-
lay Spectrometry, allows free-field acoustic measurements
to be carried out in a reflective environment.

The description of the wideband focused PVDF source
used to produce the signals in the frequency range 1-60
MHz is given in [3]. The design of the composite PZT
transducer employed in the low frequency calibration can
be found in [4].

Fig. 1 set up was also utilized to perform calibration
using nonlinear approach [5] in which a circular, 5 MHz
highly focused source with focal number 5.2 was used to
produce fundamental and harmonics in the frequency range
5-60 MHz.

III. RESULTS

In Fig. 2 the frequency response of the coplanar Mar-
coni membrane hydrophone is shown in the frequency range
from 250 kHz — 60 MHz. To maximize signal-to-noise ra-
tio, the output signal from the hydrophone was routed via
custom-built, wideband, 20 dB preamplifier. The solid plot
represents the data obtained using the swept frequency
technique described above and the open circles represent
the discrete calibration points in the frequency range 2-50
MHz supplied by a national laboratory (NPL, UK). This
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Fig. 2. Frequency response of a 0.5 mm diameter coplanar PVDF
membrane hydrophone (Marconi, UK). Solid line: swept frequency
calibration, open circles: National Physical Laboratory (UK) data.
End-of-cable sensitivity level was amplified (20 dB) to maximize the
signal-to-noise ratio.

coplanar hydrophone was used as a reference hydrophone in
the calibration of another (shielded, bilaminar) membrane
hydrophone (Sonic Technologies, now Sonora Medical Sys-
tems, Colorado, USA) and the results of this calibration
are shown in Fig. 3. Similarly, the calibration was per-
formed in the frequency range from 250 kHz to 60 MHz.
Again, the solid line represents the data obtained using the
swept frequency technique. The solid circles represent dis-
crete frequency calibration data obtained using nonlinear
KZK approach [5]. Since the effective finite apertures of the
reference and bilaminar hydrophone probe differed slightly
the data shown were corrected using the spatial averaging
correction model [6].

IV. DiscussION AND CONCLUSIONS

The results presented in Fig. 3 indicate that the calibra-
tion data obtained in this work and the ones provided by an
independent laboratory are in very good agreement. The
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Fig. 3. Frequency response of a 0.5 mm diameter shielded, bilaminar
Sonic Technologies (now Sonora Medical Systems) PVDF membrane
hydrophone in the frequency range 250 kHz — 60 MHz. Solid line:
swept frequency calibration, solid circles: nonlinear KZK data.

overall uncertainty of the measurements reported here has
increased with increasing frequency from approximately +1
dB at 25 MHz to about £2.5 dB at 60 MHz. To minimize
this latter value, the applicability of the spatial averaging
model described in [6] is being extended to 60 MHz. The
application of the model has already lessened the overall
uncertainty at 40 MHz to approximately +1.5 dB and it is
expected that once the model is verified at the frequencies
beyond 40 MHz, the +2.5 dB uncertainty will be reduced.

The results shown in Fig. 3 reveal several interesting
details of the bilaminar hydrophone behavior at the fre-
quencies beyond 40 MHz and to the best of the authors’
knowledge such data were not reported so far. Similar hy-
drophones were calibrated in the frequency range 1-100
MHz [5] using discrete nonlinear approach and the results
presented in [5] confirm that the bilaminar construction
of the hydrophones leads to peaks and valleys in their re-
sponses against the frequency. The resonance observed in
Fig. 3 in the vicinity of 18 MHz is associated with the fun-
damental frequency of approximately 50 pm thick two layer
PVDF structure [7]. The existence of the 28 and 55 MHz
minima and the 43 MHz resonance (see Fig. 3) was also
corroborated by the results presented in [5], however, the
source or origin of the variation in the sensitivity beyond
20 MHz is less obvious. Determination of this source would
require a more detailed knowledge of the thickness of the
glue layer between the two PVDF films [7] and then a care-
ful simulation of, in practice, three layer construction using
piezoelectric transducer modeling tool such as PIEZOCAD
(Sonic Concepts, Woodinville, WA, USA). The response of
the bilaminar hydrophone probe below 1 MHz is in ex-
cellent agreement with the results presented in [4] and [8§]
and shows that well below the fundamental resonance the
hydrophone sensitivity is essentially flat.

In conclusion, a powerful measurement technique allow-
ing virtually continuous calibration of the PVDF probes



in the very wide frequency range from 250 kHz — 60 MHz
was developed and verified. Current work is concentrated
on extending the swept frequency calibration method up
to 100 MHz and minimizing the overall uncertainty. As al-
ready noted, this work will require further refinement of the
spatial averaging correction model [6] and availability of the
very high frequency, wideband acoustic sources. Similarly,
further reduction of the lower limiting frequency of 250 kHz
will require availability of a high efficiency acoustic source
capable of generating output signals in the frequency range
from, say, 100 kHz to 2 MHz. The upper frequency of 2
MHz is needed to ensure the continuous frequency overlap
with the 1 MHz - 60 MHz sources used here. The imple-
mentation of such low frequency source represents quite a
challenge as it would need to be designed for the fundamen-
tal resonance frequency of approximately 2 MHz, however,
below the resonance, the transmitting voltage response de-
creases at approximately 12 dB per octave and, therefore,
may lead to inadequate signal to noise ratio during mea-
surements performed below 200 kHz.
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